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Let G be a finite group acting as automorphisms on a commutative k-algebra 

A, and A c the subalgebra of G-invariants. An old result of E. Noether, based 

on the easy fact that  A is integral over A C, is that if A is k-affine then so is 

A c .  This result can be generalized using [DG] or directly using determinants 

as IF-S] to actions of any finite-dimensional cocommutative Hopf algebra H on 

a commutative algebra A (kG being an example of such an H).  In a recent 

paper, it was shown by Zhu [Z] that cocommutativity of H can be replaced by 

semisimplicity. Failing this, however, the result might not hold. 

The aim of this paper is to prove Noether's theorem for finite-dimensional 

semisimple triangular (H, R), but where A is no longer commutative in the usual 

sense, it is quantum commutative. If H is cocommutative, with R = 1 ® 1, then 

A is quantum commutative if and only if A is commutative in the usual sense. 

Our philosophy is that  quantum-commutative H-module algebras with respect 

to (H, R) share many of the properties of commutative algebras acted upon 

by cocommutative H [CW]. The results in this paper give more evidence for 

this point of view. In the process we construct a non-commutative determinant 

function which yields an analogue of the Cayley-Hamilton theorem for certain 

endomorphisms. This determinant function is constructed for a wide class of 

Hopf algebras. 

Specifically, let (H, ( I )) be a cotriangular Hopf algebra over k; then the 

category whose objects (V, p) are right H-comodules is a symmetric monoidal 

category with a "twist" map • induced from ( I ). Tha t  is: 

• (v ® w) = ~ ( w l [ v l ) w o  ® vo (where p(v) is written as ~-']~ v0 ® Vl). 

This twist map induces an action of the symmetric group on the ith-fold ten- 

sor V ®i, which in turn gives rise to an appropriate Grassman algebra. Using 

these ideas we define in Definition 2.9 a determinant function which satisfies the 

following: 

THEOREM 2.10: Let (H, ( [ )) be a cotriangular Hopf algebra over k. Let A 

be a quantum commutative right H-comodule algebra, and V an n-dimensional 

right H-comodule so that ~(v2[vl)vo = v, for a11 v E V. Assume Chark = 0 or 

Char k > n. Let S, T E End(A ® V) be morphisms in AJ~ H. Then 

1. det(T) E A ~°H C Z(A). 

2. det(T) is independent of the choice of basis ofA~ (A®V) as a left A-module. 

3. det(I)  = 1. 
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4. de t (T  o S) -- det(T) det(S).  

Dually, if (H, R) is a triangular Hopf algebra and A and V are the analogous 

objects in the category of left H-modules, we construct a determinant function 

and prove in: 

THEOREM 2.19: Let (H, R) be a triangular Hopf algebra over k. Let A be 

a quantum commutative H-module algebra, and V an n-dimensional left H-  

module so that u = ~ S (R2)R  1 acts on V as the identity. Assume Char k = 0 

or Chark  > n. Let S , T  E EndA#H(A® V), then: 

1. ac t (T)  E A n C_ Z(A) .  

2. det(T) is independent of the choice of basis of AR(A®V ) as  a / e f t  A-module. 

3. de t ( I )  = 1. 

4. det(S o T) -- (act T)(det  S). 

When H is finite dimensional there is a complete duality between these notions. 

In Section 3 we specialize to group gradings. We find in Theorem 3.2 a concrete 

form of this determinant for H = kG, G an abelian group with a symmetric  

bicharacter . An example of this set-up is G = Zn x Zn and A = Cq[x, y] with 

xy = q - l y x ,  q~ = 1, the well known quantum plane. We illustrate the theorem 

by computing det(Tx+y), where T~+y denotes right multiplication of A by x + y. 

As expected by different considerations det(Tx+y) = (x n + yn)n. 

In Section 4 we use Theorem 2.19 to prove the generalization of Noether 's  

theorem. We prove the following: 

THEOREM 4.7: Let (H, R) be a triangular n-dimensional semisimple Hopf alge- 

bra over k, where Char k = 0 or Char k > n. Let A be a quantum commutative 

H-module algebra; then: 

1. A is integral over A H. 

2. A is a P I  ring. 

and 

THEOREM 4.8: I f  (H, R) and A are as in Theorem 4.7 and A is k-atone, then: 

1. A H is k-a~ne. 

2. A is a finitely generated left and right A H module. 

3. A is a left and right Noetherian PI  ring. 

Some examples of the algebra A to which Theorem 4.8 applies are: 
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1. The R-symmetric algebra S/~(V), 

module over (H, R), and 

2. The quantum plane Cq Ix, y]. 

ACKNOWLEDGEMENT: W e  wish to thank the referee for an outstanding effort 

and very helpful comments. 
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where V is any finite-dimensional 

1. P r e l i m i n a r i e s  

Let H be a Hopf algebra over a field k, with comultiplication A, counit c and 

antipode S. We use Sweedler's [Sw] notation, leaving out parentheses in the 

summation notation. Denote by H.A~ the category of left H-modules. If V, W E 

H J~ then so is V ® W, where the action of H on V ® W is defined by: h. (v ® w) = 

~ h l  . v ® h 2  .w,  all h E H, v E V, w E W. 

An algebra A E HJ~ is an H-module algebra (or, H acts on A) if its multi- 

plication is an H-module map; that is, if h.  (ab) = ~ ( h l  • a)(h2 • b) all h E H, 

a, b E A. For such A, there exist two associated algebras: 

1. The smash product A # H  [Sw, p. 55] which is A ® H as a vector space. 

Multiplication is defined by (a~Ch)(b#g) = ~ a(hl • b)#h2g, all a, b E 

A, g, h E H .  

2. The algebra of H-invariants A H = {a E Aih .  a = ¢(h)a, all h E H}. 

Both A and H are naturally embedded in A # H .  

Dually, a right H-comodule is a vector space V with a structure map 

p: V ~ V Q H, p(v) = ~ vo Q vl, a l l v E V  

which is eoassociative; that is: (p ® Id) o p = (Id ® A) o p. Also (Idy ® ¢)p = Idv. 

A comodule map is a map f :  V ~ W such that Pw o f = ( f  ® Id) o Pv. 

Denote by j ~ g  the category of right H-comodules. The tensor product of V 

and W in j~H is an H-comodule with structure map: 

(1)  ® = ® ® 

An algebra A E .Ad H is an H-comodule algebra if the multiplication in A is an 

H-comodule map; that  is: p(ab) = ~ aobo ® albl, all a, b E A. 
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Recall that  if H is finite-dimensional then H* is a Hopf algebra as well. Denote 

by ( , ) the evaluation of H* on H. It is well known that  if V C A~ H" then 

V C H.A/~ by defining 

(2) h.  =  (vl, h)v0, 

a l l h E H ,  v E V .  

In recent years there has been great interest in quasi-triangular Hopf 

algebras (quantum groups), which are neither commutative nor cocommutative 

Hopf algebras. The following definition is due to Drinfeld. 

Definition 1.1: A q u a s i t r i a n g u l a r  Hopf algebra is a pair (H, R), where H is a 

Hopf algebra over k and R = ~ R 1 ® R 2 C H ® H is invertible, such that  the 

following holds (r -- R): 
QT1. ~ A ( R  1) ® R 2 = ~ R 1 ® r 1 ® R2r 2, 

QT2. E R1 ® A(R2) = E RlrO)  ® r2 ® R2, 

QT3. Ac°P(h) -- R A ( h ) R  -1 ,  all h • H, where Ac°P(h) -- ~ h2 ® hi. 

QT4. If R -1 -- ~ R 2 ® R 1 then (H, R) is called a t r i a n g u l a r  Hopf algebra. 

It is a consequence of the above that R -1 = ~ S ( R 1 ) Q R  2, and that  ~ ¢(R1)R 2 

-- ~ RI¢(R 2) = 1. Of special interest to us is u = ~ S ( R 2 ) R  1. This element 

is invertible and induces $2; that is S2(h) = uhu  -1,  all h • H. When (H, R) 

is triangular u is a group-like element [Dr2], and u -- ~ R 1 R  2. If H is finite 

dimensional and Char k }(dim H then [LR] have proved that S 2 -- Id if and only 

if H is semisimple (and then it is also cosemisimple). Thus in this context, u is 

central if and only if S 2 = Id if and only if H is semisimple. Moreover, in this 

case u 2 = 1 by [Ra]. 

We are interested in the dual notion [LT] which is better suited to deal with 

infinite dimensional H. 

Definition 1.2: A c o q u a s i t r i a n g u l a r  Hopf algebra is a pair (H, ( I }) where H 

is a Hopf algebra over k and B = ( I ): H ® H --* k is a k-linear form (braiding) 

which is convolution invertible in Homk(H ® H, k) such that  the following hold: 

B1. (hlgl) = E(h l lg) (h2] l} .  

B2. (hgll) = E(gtl l)(hLI2).  

B3. ~ ( h l l g l } g 2 h 2  = ~ h~gl(h2]g2). 

B4. If ~ ( h l  ]gl)(g2 Ih2) = ~(g)e(h) then (H, (I })is called a c o t r i a n g u l a r  Hopf 

algebra. 
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When H is finite dimensional then (H, R) is quasitriangular if and only if 

(H*, ( I )) is coquasitriangular where ( I ) and R are dual notions. This is easily 

seen since H ® H is naturally isomorphic to (H* ® H*)*. Specifically, if (H, R) 

is quasitriangular, define the braiding form (I) : 

(3) (a[b} = E ( a ,  R2>(b, R 1) all a, b e H*. 

A trivial example of a triangular Hopf algebra is kG, with R = 1 ® 1, which 

is semisimple when Char k/NG ]. An example of a cotriangular Hopf algebra is 

kG where G is abelian with a symmetric bicharacter ( t ). This Hopf algebra 

is commutative and cocommutative and it arises in the context of the Lie color 

algebras. No example of a (co)semisimple (co)triangular Hopf algebra different 

from kG was known until recently when Gelaki constructed in [G] a new fam- 

ily of semisimple triangular Hopf algebras which are neither commutative nor 

cocommutative, and thus are isomorphic neither to kG nor to kG*. 

The following lemma is useful in understanding some of the later notions, 

LEMMA 1.3: Let (H, R) be a finite-dimensional triangular Hopfalgebra. Define 

<[> as in (3); then: 

1. <a, u) = E<a2lai>, for all a e H*. 

2. u is central in H ~ E(a2lal>a3 = E(a31a2)a~, all a E H*. 

3. Let V E A4 H" and consider V E HA/[ as in (2). Then v C V, 

(4) 

Proo~ 

v = v .: :. E(v l l> o = v 

1. Let a C H*, then 

(a,u) = E ( a ,  R1R 2> = E ( a l , R I > ( a 2 ,  R2> = E(a2[a l> ,  

where the last equality follows from (3). 

2. By part (1) it follows that  for any h E H: 

(a, uh I = E ( a l , u ) ( a 2 ,  h) =E(a21a l ) (a3 ,  h) 

(a, hu) = E ( a l ,  hl(a31a21. 

and 

Hence (2) follows. 

3. Let v E V, then u .  v = ~ ( v l , u ) v o  = ~(v21vt)vo, where the last equality 

follows from part (1). | 
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In the presence of triangularity or cotriangularity, the category HAl or j ~ U  

respectively is very nice. We define such a category in general. 

Let C be a symmetric monoidal category [Mac, p. 180]; that  is, C has a tensor 

product on its objects satisfying certain associativity conditions (the pentagon 

axiom) and a twist map • : 

( U x , y : X Q Y ~ - - + Y ® X  , a l l X ,  Y E C .  

This map  • satisfies a compatibili ty condition with the associativity (the hexagon 

axiom) and moreover: ~2 = id. 

Following Manin [Ma] one can now define a representation of Sm on X ®'~ by 

defining the action of (i, i + 1) as 

(i, i+1)-~, ( X I ® "  - "®Xi@Xi+l"" .®Xn) : X l @ . - - ® ¢ l x ,  ,xi+l (Xi®Xi+l)®" "®Xn 

where Xi  = X ,  all i. Then extend the action to a E S,~, by representing a as a 

product of elementary transpositions. Let 2 = Xl ® .. • ® x ~  • X®~;  define 

m X®m[a 2 = Yc, all a • S,n} ( x )  = • 

and 

and 

m 

A ¢  (X) = {2 e X ® ~ l a ' ¢  :~ = sgn (a)2, all a ~ Sm}. 

m X ~ '~  h m [ X  ~ Let S¢ (X)  = }-],~_>0 S¢ ( ) and A ¢ ( X )  = z_~m>0 / x¢ ~ J. One can check that  

S,~(X) = T ( X ) / ( ( I d  - ~ ) (x l  ® x2)) 

A ¢ ( X )  = T ( X ) / ( ( I d  + ~)(Xl ® x2)) 

where T ( X )  = tensor algebra over X (as in [Ma, p. 71]) and xl ,  x2 are arbi trary 

elements of X.  

From now on we assume that  the objects V in C are vector spaces over a field 

k. Recall tha t  with appropriate characteristic assumption, S~,,(V) and A ~ ( V )  

have nice descriptions: 

PROPOSITION 1.4: Let C, ~, S¢ and A¢ be as above, and assume the objects V 

of C are vector spaces over the field k of characteristic 0 or characteristic p > m, 

then 
m A TM S~ (V) = t m  .~ V ®m and (V) = f m  "~, V ®m 

where tm = E ,sm ¢ and/  = Eo,s  sgn ( ¢ ) ¢  
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Let V E C; the algebra S,~(V) is a basic example of an algebra which is 

commutative in the category. Precisely, 

Definition 1.5: An algebra A E C with a multiplication # is commutative in the 

category C if for a, b E A 

p o ( I d -  ~) (a® b) = 0. 

When • is the usual twist map, then being a commutative algebra in the 

category means being a usual commutative algebra. 

Now, let us specialize to the case of a Hopf algebra H which is either triangular 

or cotriangular. It is well known that 

with the twist map induced by R: 

~n:  V ® W --* 

v ® w  ~-* 

HJ~ is a symmetric monoidal category 

W @ V  

E R w ® v, R 1 I @ 

for any V, W E H.A/[, v E V, and w E W. Note tha t  cocommutat ive  Hopf algebras 

H are trivially triangular, with R -- 1 ® 1; and then ~R is the usual twist map. 

We shall denote S~, R by SR and AvR by A n .  Dually, in j ~ H  the commutativity 

constraint is induced by the braiding B = ( ] /v ia :  

• ® w) =  (wllvl) 0 ® v0 

for anyV,  W E A ~ H ,  v E V a n d w E W .  

We shall denote Sv z by SB and A~,~ by As .  

In [CW] we discussed the commutative algebras in the category HAd when 

(H, R) is triangular. We termed such algebras "quantum commutative". Explic- 

itly, A is such an algebra if 

1. A is an H-module algebra and 

2. ab = ~],(R 2. b)(R 1.a),  all a,b E A. 

Dually, when (H, { I }) is cotriangular then A E A4 H is quantum commutative if: 

1. A is an H-comodule algebra and 

2. ab = ~-](bllal)boao, all a,b E A. 
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2. ~ - e x t e r i o r  a l g e b r a s  a n d  a d e t e r m i n a n t  c o n s t r u c t i o n  

In this section we construct determinant functions via appropriate exterior 

algebras. This will be carried out in two situations which are dual when the 

Hopf algebra is finite-dimensional. 

The main ideas are proved in the first part ,  the cotriangular case. We choose 

to elaborate on such Hopf algebras for they are bet ter  suited to deal with infinite- 

dimensional H.  In the second part  of this section we outline the analogous setup 

for triangular Hopf algebras. Since the proofs are dual we only briefly sketch 

them out. 

2.1 THE COTRIANGULAR CASE. Let (H, ( I )) be a cotriangular Hopf algebra 

and V a right H-comodule. Let V ®m = V ® . . .  (:~ V, m times, where the 

unadorned ® means tensoring over the field k. Let Sm denote the symmetric  

group. As pointed out in the preliminaries there are two natural  ways to make 

V ®'~ a kSm-module: 

1. Via the usual twist map which ignores H. We call this the usual represen- 

tat ion and denote the action by . 

2. Via ¢2B which we call the B-representation of kS,,, and denote the action 

by "B (where B = (I }). 

The usual symmetr ic  S(V)~ or exterior A(V), algebras of V are constructed via 

(1) and are well studied. For example, if V is n-dimensional then: 

A(v) = A ° ( v ) ,  , 

w h e r e d i m A ~ ( V ) = ( n )  " i  

Using this, one may construct the determinant function and prove the Cayley-  

Hamil ton theorem. 

The aim of this section is to show that  under certain conditions, S(V) and A(V) 

are isomorphic to their analogues SB(V) and AB(V). This will then be used to 

construct a determinant function which will yield an analogue of the Cayley-  

Hamil ton theorem for certain endomorphisms. Assume V is finite dimensional 

and let {vl, . . .  , v ~} be a basis for V. Let 

(5) p(vi)=EvSQfls,i=E(Vl)oQ(Vi)l where fl~,i C H. 
8 
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I t  is easy to see t ha t  

(6) A03s,i) = ~ j3~,t ® j3t,i, and 
t 

In  this no ta t ion  (4) has an explicit form for: 

for all i. Thus  

(7) v = ~-'~Sv21vl}vo for all v • V ¢=~ ~(~3t,i]/~s,t} = 6i,, for all i. 
t 

As usual,  let p2(v) = (p ® Id)p(v)  = (Id ® A)p(v),  and define pi(v) inductively. 

In  par t icu lar  we m a y  write: 

tl,.",tm--1 

Let  X and XB denote  the characters  associated with the usual and B-represen-  

ta t ions  of kSm on V ®m, respectively. T h a t  is X(a) = t race(Ao) ,  where Ao is the 

ma t r i x  associa ted  to the act ion of a with respect  to a basis of V ®m. We show: 

THEOREM 2.1: Let (H, ( [ }) be a cotriangular Hopf algebra over k. Let V be 

an n-dimensional right H-comodule with ~(v21vl)vo = v for a11 v E V; then 

1. XB(a) = X(a), for all a G Sin, all m. 

2. If, moreover, Char  k = 0 or Char  k > m, then 

(v®m, .) and (V~m, ' s )  

are isomorphic kSm-modules. 

Proof: 1. We first prove the claim for a = ( 1 , . . . ,  m) .  Let  { ? j l , . . . ,  V n} be a 

basis for V; then  {v i~ ® . . .  ® v ~'~ } is a basis for V ®m. I t  is immedia te  t h a t  in 

the  usual  representa t ion  of kSm such an element is invariant  under  ( 1 , . . . ,  m)  if 

and only if i l  . . . . .  ira. Hence the number  of such elements is d im V. Thus  

( 1 , . . . , m )  = d i m Y .  

Next  consider the B-representa t ion.  
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Since ( 1 , . . . , m )  = (1, 2 ) . . . ( m -  2, m -  1 ) ( m -  1, m),  we have: 

( 1 , . . . ,  m ) .  ( V  i l  ~ V i2  ( ~ ' ' "  ~ V i m  ) 

= ( 1 , 2 ) ( 2 , 3 ) . . . ( m - l , m ) . ( v  i~ ® v  i 2 . . . Q v  ira) 

• " ira ira--1 ira i m - - 1  . . . . . . . . .  (1,2)(2,3) ( m - 2 ,  m 1) ~(v'~®¢~® ev0 ®v0 )% I~ > 

= ( 1 , 2 ) ( 2 , 3 ) . . . ( m -  3, m -  2) .  E ( v  ~ ®v i2 . . .®v~ m ®Vo "~-2 ®v i~-') 

• i r n - - 2  i m  " <vi~lv~ }(% I~p-~> 
• i 2  i r a - - 1  i m  i 1 " ' =EViom®V3I®Vo ®' ' '®V 0 (V 1 I V l } ( ~ P l v l  ~) 

in.* l m - -  2 ira ira--1 
• " ( ~ _ ~ l V l  }(~_~lv~ }. 

Let ~ i j  be as in (5); then  the coefficient of (v i~ ® v i2 ® . . .  ® v ira) is given by: 

ti 

Hence 

(s) X B ( 1 , 2 , ' ' ' , m ) =  E E (13il,t211~12,11} 
i l  l'"~ir¢~ l~ i 

Now, since v = ~(v2[vl}vo for all v E V, we apply  the equivalent form in (7) 

to the lef t -most  factor  in the sum. We see tha t  t2 = i2 if the p roduc t  is to be  

non-zero. Cont inuing f rom left to right, we see tha t  t i = ij, for all j ,  and thus 

~-~dim V 1 = d im V. We conclude that :  (8) equals z-.,i.~=l 

(9) ~,(1,  2 , . . . ,  m) = ~(1, 2, . . . ,  m). 

Now let a C Sm; then  a can be wri t ten  as a product  of disjoint cycles of length 

r l , . . .  ,ft. So a is conjugate  to 

T---- ( 1 , . . . , ? ' 1 ) ( T 1  -{- i , . . . , r  i - ] - r 2 ) . . . ( r  I n t - * - . + T t _  1 - ~ - X , - . . , m ) .  

Since on conjugate  elements  X and XB have the same value, it is enough to prove 

the c la im for w. For each i = 1 , . . . , t  take Ti = ( 1 , . . . , r l ) ,  V~ = V ®~ and Xi, 

(XB), the  appropr ia te  characters  on V~. Then  X(a) = X(~') = 1-I~=l xi(7i) and 

kB(a) = I]~=l(XB)i(ri). So by (9) 

~(~) = ~,(~) .  
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2. I f  Char  k = 0 or char(k) > m, then two finite-dimensional left kSm-modules  

are isomorphic if and only if they have the same characters. We are done by (1). 

| 

As a corollary we have: 

COROLLARY 2.2: Let (H, { [ }) be a cotriangular Hopf  algebra over k. Let V 

be an n-dimensional right H-comodule such that ~-~(v2[vllvo = v all v c V. I f  

Char  k = 0 or Char  k > n then 

0 n 

A B ( v )  = AB + +  AB, 
A,(n)  

where dim B = i ' 

all i > O. 

Proo~ By Proposi t ion 1.4, for all i, A s  = fi "B V ¢~i and A i = fi • v ®i, for all 

i < n. By Theorem 2.1, fi "S V ®~ --- fi • V ®i, hence d i m A B  = d i m f i  - V ®i = 

(n) . 
A related symmetr ic  monoidal  category arises as follows: Let (H, ( I )) be 

cotriangular,  and let A C .M H be quan tum commutat ive.  Let W E .M H so tha t  

W is a left A-module  and 

(10) p(a. w) = E a°" Wo ® alwl .  

Denote  the category of such W by A M .  The morphisms in the category are left 

A-module  right H-comodule  maps f .  

From now on, if there is no danger of ambiguity we shall repress the B in "B. 

Mimicking [CW, 2.5] we can show 

LEMMA 2.3: Let (H, ( [ I), A, W be as above: 

1. Define a right action of  A on W by: 

w ~ a = E ( a l I w x ) a o  .wo, 

ali w E W, a E A. Then this action makes W into an A-A-bimodule. 

2. I f  M,  N C AJ~[ H, then M ®A N E AJ~ H, where 

a ' ( m ® A n ) = a ' m ® n  and p ( m ® A n ) = E ( m o ® A n o ) ® m l n l ,  

f o r a l l m E M ,  n E N, a E A. 
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3. I f  V E M H, then W = A ® V is an A-A-bimodule by: 

(b®1)) = a l l e y ,  1)) a =  ( ,1)llal)( obo ®1)o) 

all a,b E A, v E V. 

4. Let X be an A-A-bimodule and Y a k-vector space; then X ®A A @ Y is 

isomorphic as a left A-module to X ® Y where 0: X ® Y ~ X @A A @ Y is 

given by: 

x ® y H X @ A I ® y ,  a l l x G X ,  y G Y .  

5. Let V1,. •. ,  Vm be right H-comodules; then 

0: A ® (V1 ® ' "  ® Vm) ~ (A ® V1) ®A (A ® V2) ® m " "  @A (A ® Vm) 

given by: 

a ® (1) 1 ® ' ' "  ® 1)m) ~ (a ® 1)1) ®A (1 ® v2) ®A ' ' "  @A (1 @ Vm) 

a11 vi 6 Vi, a E A, is an isomorphism in AA4 H. 

Proof." (1), (2) and (3) can be proved as in [CW, 2.5], (4) is well known, (5) is 

ea~sily checked by induction. | 

We prove that  AJ~ H is a symmetric monoidal category. 

THEOREM 2.4: Let (H, ( [ }) be a cotriangular Hopf  algebra, A a quantum- 

commutat ive H-comodule algebra. 

1. For W 6 AA4 H define 

(i, i + 1) • (wl e A  "'" ®AWi ® Wi+l ®A "'" ®A Wm) 

: Wl®A " ' '®A ~B(Wi+I ®A Wi) ®A *' '®A Wm 

a11 wi • W. Let • be induced by this action; then (A.A~H,®A, ~)  i8 a 

symmetr ic  monoidal category. 

2. For each x • kSm, the action of  x is a morphism in the category. 

Proof'. 1. As in [CW, Th. 2.5] the category is symmetric monoidal once we show 

that  the action of kS,~ is well defined. That  is, we must show that: 

(1,2). [(v ®A (a-w)] ---- (1,2). [(v ~ a) ® w)] 
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for all v, w E W, a E A. Well, 

(1,2)-[v ®A (a" w)] 

-~ E (alWl[Vl)(ao " wo) ® Vo 

= E(Wl[Vl} (a ,  iv2)(ao" wo) ® vo 

On the other hand, 

(using B2). 

(1,2). [(v ¢- a) @A w] 

= (1,2)" E ( a l l v l ) ( a o .  vo) ®A W 

: Eiwi[alVl)(a21v2}wO ®A (ao" Yo) 

= E ( W l  [alvl)(a2[v2)(wo ~-- ao) @A VO) 

= y'~.(w21a~)(a3iv2)(allwl)(ao" wo) ®A Vo 

= E<w2[a2><wa[vl><a3[v2>(al[wl>(ao" Wo) ®A Vo (using B1) 

= E(Wl[Vl)(al[v2>(ao" WO) ®A VO (using B4). 

2. We show first that the action of kSm is an A-module map. 

L e t a E A ,  v , w C W ,  then 

a .  [(1,2). (v ®A W)] = a. E(Wl[Vl)WO @A VO = E(Wl[Vl) (a"  Wo) @A V0, 

while 

(1,2). [(a-~) ®A w] 

= E ( w l [ a l v l l w o  ®A (ao" Vo) 

: ~__,(wllal)(w21vl)wo ®A (ao" Vo) (using B1) 

= E(wl]al}(W2[Vl)(wo ~ ao) ®A vo 

"~ E (w2]a2)(w31Vl)(al]Wl)(ao . Wo) ®A VO 

= E ( w l l v l } ( a "  Wo) ®A vo (using B4). 

We show next that  it is an H-comodule map, that is, we show that  

Well, 

((1, 2 ) ,  Id)p(v ® w) = p((i, 2). (v ® ~)).  

((1,2) ® Id)p(v ® w) 

= E ( ( 1 ,  2) ® Id)(vo ® Wo ® VlWl) 

= ~ ( w x l v l ) w o  ® vo ® v~w2, 
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while 

p((1, 2). (v ® w)) = p(~(w, lvl)wo ® vo) =  ( 21v=)wo ® vo ® W,Vl. 

Equality follows by B3. 

It remains to show that 

p(1 ,2)- [a .  (v ®w)] = Z ( ( 1 , 2 )  ®Id) .  [(a. (v ® w))0 @ (a. (v @w)),]. 

This is easily seen following the same proof as in part (2), using (1) and (10). 
| 

In the following we show that the B-actions of a E S,~ on the k-tensor A ® V  ®m 

and on the A-tensor (A ® V) ®Am (as defined above) are essentially the same. 

Precisely: 

LEMMA 2.5: Let H, A, V, 0 be as in Lemma 2.3(5), then for each a E Sin, the 

following diagram is commutative 

A ® V ®m Id®a , A ® V ®'~ 

4 t o 
(A® V) ®Am ° , (A @ V) ®Am 

where all maps are isomorphisms in the category A.A/[ H. 

Proof." We prove the lemma for a = (1,2); the rest follows similarly. Let 

v l , . . . , v  m E V, a E A, then: 

(1, 2).  0(a ® d ® . . .  ® v TM) 

= (1, 2)" ((a ® vl) ~A (1 ® v 2) ®A' ' "  ®A (1 ® vm)) 

= (1, 2). (a[(1 ® v 1) ®A (1 ® v 2) ®A ' ' "  ®A (1 ® v'~)]) 

= a(X, 2). [(1 ® v 1) ®A (1 ® V 2) ®A ' ' "  ®A (1 ® Vm)] (using Theorem 2.4) 

= ~}~ a(v121v1}(X ® vl) ®A (1 ® v~) ®A' ' "  ®A (1 ® v TM) 

= 0(Id e (1, 2))(a ® V 1 ® V 2 ® - ' '  ® Vm). 

Since 0, and a a r e  AJ~ H morphisms, so are all the maps in the diagram. | 

S i n c e  (AJ~ H, ®m, ~) is a symmetric monoidal category, we can define AB(W) 

for any W EA j~H.  AS a consequence of Theorem 2.4 and Lemma 2.5 we have 

for W = A ® V: 
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COROLLARY 2.6: Let ( H, ( [ )) be a cotriangular Hopf algebra, A a quantum 

commutative H-comodule algebra and V E M H  ; then: 

i i 

A(A®V) A®A(v), 
B B 

where the isomorphism is a category morphism. 

The  following is the key to what  follows. 

COROLLARY 2.7: Let (H, ( ] )) be a cotriangular Hopf algebra over k. Let A 

be a quantum-commutative H-comodule algebra, and V an n-dimensional H- 

comodule so that ~(v2[vl)vo = v for all v E V. I f  Chark = 0 or C h a r k  > n 

then: 
n 

A(A ® v) = (A ® = A . m  = m ~ A, 
B 

where m is a basis of A ~ ( A  ® V) as both a left and right A-module and f,~ is 

as defined in Proposition 1.4. Moreover, p(m) = m ® h, where h is a group-like 

element  of H. 

Proob By Proposi t ion  1.4, A ~ ( A  ® V) = f~ • (A ® V) ®~. However,  by  

T h e o r e m  2.4, fn • (A @ V) ®~ --No A ® f~ • V ®~ as A-A-bimodules.  Moreover,  

it follows f rom Corol lary 2.2 t ha t  d im A ~ ( V  ) = 1. Hence there exists a nonzero 

w E fn"  V ®n which is a k-basis for the H-comodule  f ~ .  V ®~ = A ~ ( V ) .  Since w 

generates  a 1-dimensional comodule,  p(w) = w ® h, some h E H.  

Obviously,  1 @ w is a basis of A ® f,~ • V ®n as a left A-module,  however it is 

also a basis of A ® f ~ .  V ®~ as a right A-module.  To see this, all we have to show 

is t ha t  for a • A, a .  (1 ® w) = (1 ® w) ~-- b, some b • A. Well, 

a.(1 ® w) 

= E aoE(al)e(Wl). (1 ® wo) 

= E(al[wl l (wBla21ao.  (1 ® Wo) (using B4) 

= E ( w l [ a l / ( 1  ® w0) *--- a0; 

bu t  p(w) = w ® h, so the above equals 

E ( h l a l ) ( 1  @ w) e-- ao = (1 ® w) ~ (E (h ]a l )a o )  

as claimed. 
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Now let m -- O(1 ® w); then since 0 is a morphism in the category A.J~ H, w e  

are done. | 

I t  is Corol lary 2.7 which enables us to construct  the determinant  function, just  

as the exterior algebra does in the classical case. 

LEMMA 2.8: Let T E End(A ® V) be a morphism in Ad~ H. Then the diagonal 

action o f T  ®~ on (A ® V) e~ defined by: 

T®~(x l  ®A "'" @A Xn) = T ( X l )  ®A "'" ~ A  T (xn ) ,  

where xi E A @ V, is a molphism in Ad~ H which commutes with the action of  

kS~, 

Proof: I t  is s t raightforward to check that  T ° ' '  is a morphism in AA,~ H. We show 

tha t  T ®n commutes  with the action of kSn. Let us check this for a = (1, 2). 

The rest will follow similarly. Well, T is a comodule map; tha t  is: pT(x)  = 

T(xo) @ xl ,  for all x G A ® V. Thus for all xi E A @ V : 

(1 ,2) .  T®~(xl @A x2 ®A " " ® A  x,~) 

= ~-~((XS)ll(Xl)l)T((x2)o) @A T((x l )o)  ® A " "  @A T(x~).  

This expression equals 

T®n(1,2)  ( X l @ A X 2 @ A ' ' ' @ A X n )  

by the definition of the act ion of (1, 2). | 

As a result  we get tha t  A - m = f~ • (A @ V) ®~ is T®'~-stable. In  part icular,  

T®~(m) C A .m;  tha t  is T®~(m) = arm,  where a T E A. We define: 

Definition 2.9: Let (H, ( [ }) be a cotriangular Hopf algebra over k, let A be 

a quan tum-commuta t ive  H-comodule  algebra and let V be an n-dimensional  

H-comodu le  so tha t  ~(v21vl)vo = v for all v C V. Assume C h a r h  = 0 or 
n 

Char  k > n. Let m be a basis of A B ( A ® V )  as a left A-module,  let T E E n d ( A ® V )  

be a morphism in AJ~ H and let T®'~(m) = aTm , where a T E A. Define 

det(T) = a T. 

We prove the main  result of this section: 
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THEOREM 2.10: Let (H, ( I )) be a cotriangular H o p f  algebra over k. Le t  A 

be a q u a n t u m - c o m m u t a t i v e  right H-comodu le  algebra, and V an n-dimensional  

right H - c o m o d u l e  so that  Y~(v2]vl)vo = v, for all v C V.  Assume Chark  = 0 or 

Char k > n. Le t  S, T E End(A ® V)  be morph isms  in AJ~ H. Then  

1. det(T) E A ¢°H C Z ( A ) .  

2. det(T) is independent  of  the choice o f  basis o f  A ~ (A®V) as a left A-module .  

3. det ( I )  = 1. 

4. de t (T o S) = det(T) det(S). 

Proof: Note that  A c°H C Z (A) .  For if a C A c°H and b E A, then 

ab = ~ ( b ,  ll)boa = ~ ¢(bl)boa = ba. 

Since it is easy to see that  det(T o S) = det(S) det(T),  (4) will follow once we 

show (1). Obviously det(Id) = 1, so let us prove (1). 

Let m be a basis element of AB(A ® V); then p(m)  = m ® h, where h is 

group-like. Now, 

E ( d e t  T)0 • m ® (det T)I 

= E ( d e t  T)o . m o  ® ( d e t T ) l r n l S ( m 2 )  

= E p((det T ) • m0)(1 @ S(ml))  

= (p ( (de tT) .  m))(1 @ h -1) 

= (p(T®~(m))) (1  ® h -1)  

= ((T ®n ® Id)p(m))(1 @ h -1) 

= (T ®~ @Id) (m® h)(1 ® h -1) 

= ( d e t T ) . m ®  1. 

Since A.  m is a free A-module, the above implies that 

p(det T) = det T ® 1. 

2. Let m'  be another basis of AB(A ® v); then m' = a .  m where a E A. 

Since T ®n is a left A-module map, T ® n ( m  ') = a .  T®'~(m) = ea T . m .  By (1), 

a T e Z ( A ) ,  and hence this equals a r • m'. That  is, T O n ( m  ') = a r • m' .  | 
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2.2 THE TRIANGULAR CASE. In this subsection we briefly outline the dual 

situation. Let (H, R) be a t r iangular  Hopf algebra, and let A E H J ~  be a 

quan tum-commuta t ive  H-module  algebra. Let W E HA4 such tha t  W is a left 

A-module  and h • ( a - w )  = ~ ( h l  • a)(h2 • w), all a 6 A, h E H and w C W. 

The  ca tegory of such W is known to be equivalent to the category of  left A # H -  

modules. Denote this category by A#HJ~. As in the preliminaries, kSm acts 

on V ®'~ via kI'R, we denote this action by 'R and let XR be the corresponding 

character.  Moreover, as pointed out in (4), the previous condition }--]~(v2i'ol}V0 = 

v, for all v C V E A4 H, is replaced in this sett ing by the condition: u acts on 

V C HJ~ aS the identity, where u = }~ S(R2)R 1 as defined and discussed after 

Definition 1.1. 

We star t  with the dual form of Theorem 2.1: 

THEOREM 2.11: Let (H, R) be a triangular Hopf algebra over k. Let V be an 

n-dimensional left H-module so that  u acts on V as the identity; then 

1. XR(a) = X(a), for ali a E Sin, all m. 

2. If, moreover, C h a r k  = 0 or C h a r k  > n, then (V ®m, .) and (V ®m, "n) are 

isomorphic as kS,~-modules, a11 m. 

Proo~ First,  as in the proof  of Theorem 2.1 we show (1) for a = ( 1 , . . . , m ) ,  

and { V l , . . . ,  vn} a basis for V. 
n For each h E H,  write: h .v~ = ~ j = l  ~ji(h)vj; then: 

(11) ~ j ( g h )  = E ~ i k ( g ) ~ k j ( h )  for all g,h e H. 
k 

Moreover, since u • v -- v, for all v, 

(12) ~ij(uh) = 3i j (h) ,  all h E H all 1 < i , j  < n. 

Let R{ = E R ~  ® R 2 = R = E R1 ® R2, 1 < i < m. Applying (11) yields 

( 1 , - - . , m )  "R (vii @ ' " ® v ~ )  

= R 2 1 E (  m - l " " R ~ ) ' v ~ m  ® R m - l " v ~  ® ' " ® R } ' v ~ m - '  

= E • i ,  im (Rm-12 . . . R  21)[3~2 il ( R l m - 1 ) ' " Z I ~ _ I ( R ~ ) ( v , ,  ® " "' ® v ~ )  + y 

where y is a linear combinat ion of the elements other than  vii ® " - " ® v~m in the 
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basis {vj ®vk ® " - ® v i i i  <_ j , k , l  < m}. Thus 

XR(1 , . . . ,m)  

R 2 R 2 (R~_I) "~m ,m-, = ~ , , ~ . (  m - 1  ~ ) ~ , ~ , ,  (RD 

~'--'[~L..~o2~,~" rRlra-1 R2m-l"" R2) "" "fli,~ i,~_,(R]) (using (11)) 

= ~ i 2 ~ m ( u . . . R ~ ) . . . ~ i , ~  ,,~_~(R]) (since u =  ~ RIR 2) 

i~(Rm_ 2 .R~) . . .~ ,~  i~_~(R~) (using (12)). = ~--~. ~2 2 .. 

Continuing as above, we get 

dim V 

X R ( 1 , . . . , m ) =  ~ f l i ~ i , ~ ( u ) = d i m Y = x ( 1 , ' " , m ) .  I 

COROLLARY2.12: Let (H,R) be a triangular Hopf algebra over k. Let V be an 

n-dimensional left H-module such that u acts on V as the identity. / /Char  k = 0 

or Char k > n then 

A~(v ) o n = A i  ( n ) where dim = 
R i ' 

a l l / >  O. 

Proof: The proof follows as in Corollary 2.2, replacing B with R. II 

With the following definitions we have the dual of Lemma 2.3 which was proved 

in [CW] for the triangular case. For each W C A#HJ~, a E A define 

w ~ a = ~-'~(R 2 . a ) ( R  1.w). 

For M, N • A#HA/I, define a.(m®An) = am®An and h.(mQAn) = ~-~(hl.m)®A 

( h 2 . n ) , a l l m • M ,  n • N ,  a • A .  If V •  H A ~ , l e t W = A ® V .  Fora ,  b • A ,  

define a .  (b ®A v) = ab ®A v, and (b @A v) ~ a = ~--:~(R 2. a)(R~, b) @A (R~. v). 

We have: 

THEOREM 2.13: Let (H,R) be a triangular Hopf algebra and A a quantum 

commutative H-module algebra. 

1. For W • A # H J ~  define 

(i,i + 1) • (Vl ®A"" ®A vi @ vi+l @A "''@A Vm) 

"=- ~ Vl ®A''" ®A ~R(Vi+I ®A Vi) ®A''" ®A Vm 
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all vi 6 W. Let • be induced by this action; then (A~HJ~, ®A, ffJ) is a 

symmetric monoidal category. 

2. The action of kSm induced by the above is a morphism in the category. 

Proof" 1. We need to show that the action of kSm is well defined. That is, 

we must show that (1,2)- (v @A (a" w)) : (1,2)- (v ~ a) ® w), all a ~ A and 

v, w E W. In A # H  write ah for a#h; then ha = ~ ( h l  • a)h2. Well, 

(1,2). [v ®A (a. ~)] 

= E ( R  2- (a-w)) ®A (R 1" v) 

= E ( ( R  2. a). (R2 2. w)) ®A (R 1" v) 

: ~--~((r 2 .a) - (R 2.w))®A (Rlrl'v) (using QT2), 

while 

(1,2). [(v ~-  a) ®A w] 

= E ( R  2" w) ®A (R 1" (v ~- a)) 

- - E ( R  2 . w ) ® A (  R l ' [ ( r  2 ' a ) ' ( r  1.v)] 

= Z ( R  2. w) ®A (R~r 2" a). (R~r 1. v) 

--- E ( R 2 T  2- w) ®A [(Rlr 2" a). (Tlr 1. v)] 

= E [ ( R 2 T  2. w) *- (Rlr 2.a)] @A (Tlr l"v)  

= E [ ( S 2 R l r  2. a). (S1R2T 2.w)] ®A (Tlr 1" v) 

: E ( r  2-a) -  (T 2-w) @A (Tlr  l"v)  

(using QT1) 

(using QT4). 

2. We show first that the action of kSm is an A-module map. Let a E A and 

v, w E W; then 

a-[(1, 2). (v OA w)] = ] ~ ( a R  ~ • w) OA (R 1. v), 
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while 

(1,2). [a. (v NA w)] 

= ~ R  2 . w e A R  l " ( a ' v )  

= Z R2"w®A (RI .a) (R~.v)  

= E R2r2" w ®A (R 1" a)(r 1" v) (using QT1) 

= ~ ( n 2 r 2  • ~ ~- (R 1 • a)) ®A (r ' .  v) 

= ~-~(T2R 1. a). (T1R2r 2. w) @A (r 1" v) 

= ~-~(ar 2. w) ®A (r 1" v) (using qw4).  

The proof of the fact that  the action of kSm is an H-module  map  follows from 

QT3. | 

LEMMA 2.14: Let (H, R) be a triangular Hopfalgebra over k and let V E H.hd. 

Let A be a quantum-commutative H-module algebra and let 0 be as in Lemma 

2.3(5); then for each a E Sin, the following diagram is commutative: 

A @ V ®m Id®a , A ® V ®'~ 

01 10 
(A ® V) ®Am ° , (A @ V) ®Am 

where all maps are isomorphisms in the category A#H.AZ~. 

Proof: The proof follows from Theorem 2.13 in the same way as Lemma  2.5 

follows from Theorem 2.4 | 

i COROLLARY 2.15: Let ( H , R ) , A , V  be as in Lemma 2.14; then AR(A ® v) ~- 

A ® A ~ ( v )  where the isomorphism is a category morphism. 

COROLLARY 2.16: Let (H, R), A, V be as above. If  Char k = 0 or Char k > n, 

then: 

A~(A® v)=  A. (A® V)®~ = A . m = m ~  A 

n where m is a basis of AR(A ® V) as both a left and right A-module and f~ 

is as deIined in Proposition 1.4. Moreover, there exists A 6 G(H*) so that 

h.  m = (A, h)m, for all h E H. 
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Proo~ As in the proof of Corollary 2.7. By Proposition 1.4, Theorem 2.13 and 
n 

the dual form of Corollary 2.2, dim AR(V) = 1. Hence there exists w E fn" V ®" 

which is a k-basis for the H-module f ~ - V  ®~ = AR(V). Thus h . w  E kw for each 

h E H.  Tha t  is, h . w  = (;~,h)w where A E H*. We need to show that  1 ® w  is a 

right A-basis of A ® f , -  V ®~ as well. Tha t  is, we must show tha t  for any a E A, 

a . ( l @ w ) = ( l @ w )  ~ b ,  s o m e b E A .  Well, 

a.(1 ® w) 

--- E ( R 2 r  1. a) .  (1 @ RZr 2 . w )  (by QT4) 

-- E ( 1  ® r 2. w) . -  (r 1 . a )  

= E ( 1  ® ()~,r2)w) * - -  (r 1- a) 

----- (1 ®w)  ~-- E ( ) h r 2 ) r l  .a  

as claimed. | 

COROLLARY 2.17: Let T E EndA#H(A Q V), and let T ®n act diagonally on 

(A ® V)°A n. Then T ®n is an A # H - m o d u l e  map that commutes with the action 

of kSm. 

Proo£" I t  is straightforward that  T ®n is an A # H - m o d u l e  map; it commutes 

with the action of kSm since this action is defined via R (i.e. via the H-action).  

| 

Let m = ~9(l@w). By the above remark, A . m  = f n - ( A @ V )  ®~ is stable 

under T ®n. In particular T®~(ra) = aTm , where a T E A. 

Del~nition 2.18: Let (H, R) be a triangular Hopf algebra over k, let A be a 

quantum-commutat ive  H-module  algebra and let V be an n-dimensional H-  

module so tha t  u acts on V as the identity. Assume Char k = 0 or Char k > n. 
n Let m be a basis of AR(A ® V) as a left A-module, let T E End(A ® V) be a 

morphism in A M  H and let T®n(m) = a r m  , where a T E A. Define 

det(T) = a T. 

THEOREM 2.19: Let (H ,R)  be a triangular Hop[Mgebra over k. Let A be 

a quantum-commutat ive  H-module algebra, and V an n-dimensional left H-  

module so that u acts on V as the identity. Assume Char k = 0 or Char k > n. 

Let S , T  E EndA#H(A ® V), then: 



208 QUANTUM COMMUTATIVE ALGEBRAS Isr. J. Math. 

1. det(T) e A H C_ Z(A).  

2. det(T) is independent of the choice of basis of A~  ( A® V ) as a left A-module. 

3. det(I)  = 1. 

4. det(S o T) -- (det T)(det  S). 

Proof: All we have to show is (1). The rest is the same as in the proof of 

Theorem 2.10. Let h E H; then 

(h. det(T))  • m 

= h i -  (det(T) (h2) • m )  

= E h i -  (det(T)(A, s(h2))m) 

= E < A ,  s(h2))hl" (T®n(m)) 

= • m )  

= h l > T ® " ( m )  

= ¢(h) de t (T)m 

Hence h .  det(T) = ¢(h) det(T) as claimed. 

(using Corollary 2.16) 

(since A E G(H*)). 

3. A p p l i c a t i o n s  t o  g r o u p  g rad ings  

In what follows we give an explicit expression of the determinant for H = kG, G 

an abelian group, possibly infinite, with a symmetric bicharacter ( ] ). Let V be 

an H-comodule; then as is well known, V is G-graded. That  is: V • = v9 

where Vg = {v E V[p(v) = v ® g}. In particular V1 = V c°H 

The condition: ~(vllv2}vo = v on V just means here that: 

(13) <gig> = 1 

for all g in the support of V (i.e V 9 ~ 0). This assumption can be stated in the 

language of Lie color algebras [S] as follows: Let G+ = {g E Gl(glg > = 1} and 

V+ = ~-~g~c+ Vg, then our assumption is that V = V+. 

In what follows V will be finite dimensional, so we choose a basis B = {ui} 

of V which consists of homogeneous elements. That  is, p(u~) -- u~ ® g~, some 

gi E G. Let A be a quantum-commutative H-comodule algebra; that  is, for 

a E A 9, b E Ah, 

(14) ab = (hlg}ba. 



Vol. 96, 1996 M. COHEN, S. WESTREICH AND S. ZHU 209 

Form A ® V, which, by (1), is also G-graded: (A ® V)~ = ~ h e G  A~h-~ ® Vh. Let 

T E End(A ® V) be a morphism in AJ~H; then for each ui in the homogeneous 

basis of V: 
n 

(15) T(1 ® u~) = E a~j ® uj.  
j = l  

Moreover, since T is a comodule map, T(1 ® u~) E (A ® V)g~, and thus the above 

a 0 E ng~g~. 

Also note that  for x E (A ® V)g and y E (A ® V)h, 

(16) ~ , ( x  ® y) : (hig}(y ® x). 

Hence as in the usual situation, if T E S~ and xi E (A ® V)g,, 

(17) T" (X 1 @ ' ' "  ® X n )  : ~tT(/T--I(1 ) ® ' ' "  £_%X~--l(n)) 

where p~ E k. 

For simplicity of notation, let us write throughout av for a ® v E A ® V. All 

tensors are now over A. As in Lemma 2.3, for v E V 9, a E Ah and w E V: 

v @ aw = (v ~ a) ® w = (h lg )av  ® w .  (18) 

Recall tha t  

(19) <gih>(git> = (glht>. 

Hence, for all g E G+, h , t  E G: 

(20) (gt[gh) = (g[h)(t[gh). 

Let a = ( i l , . . . i k )  be a cycle in S, .  Define 

a a  = a i l i 2 a i 2 i s  " "" a i ~ Q .  

Since a can be represented as ( i2 , . . . , i k ,  il) . . . . .  (ik, i 1 , . - . , / k - l ) ,  we show 

first that  ao is well defined. Consider the representation ( i j , . . . ,  ik, i l , . . . ,  i j -1) .  

Let x = a i ~ , i ~ + l " "  " a i k , i l  and y = ail ,~2""%_~,i j;  then we claim that  xy  = 

yx  = ao. Indeed, let g = gijg~l; then x E Ag and y E Ag-, .  By (14) we have 

xy  = (g- l lg )yx;  but  (g- l lg)  = 1 since (g tg )= 1. So xy  = yx  as claimed. Now, 

since aij E Ag~gZ1, it is immediate that  ao E A1 = A c°H C_ Z(A) .  
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If  a E S,~, then express a as a product  of disjoint cycles a = a l  • " a ~  and now 

define 

ao = aa l  " " "ao~.  

Before we state  the main theorem of this section we need a technical lemma. 

LEMMA 3.1: Let  k be a field o f  characteristic 0 and let G be an abelian group 

wi th  a s y m m e t r i c  bicharacter ( [ ). Le t  V be n-dimensional  and G-graded, so 

tha t  for all g E suppor t  V, ( g i g )  = 1. Le t  A be a G-graded algebra so tha t  

ab = (h[g )ba  for all a E Ag, b E Ah.  Le t  B = {ui} be a homogeneous  basis o f  

V;  then 

(21) a . ( a l a ( 1 ) u a ( 1 )  ® ' "  ® a n a ( n ) U a ( n ) )  = a a u l  ® " "  ® u n ,  

all a E Sn. 

Proo~ At first we prove tha t  if a = ( i l , . . . ,  ik) and uij E Vg, j , then 

(22) (a i l i 2u i2  ® ai21aUia ® " " " ® a ik i l  u i l  ) 

= (g~:~lg~'"g,2)ao(~,2 ® ~  ®-- -®u~l ) .  

Indeed, by (18) and (19): 

( aQ i2 ui2 ® • • . ® ai  ~ Q u Q  ) 

= (9~2 g~ 119i2 ) (gi2 g~ x l 9i3 9~2 )"" (gi~_l g~ 119i~_1 gi~_="" 9i= ) 

(g~gT~ l l g ~ - ~  ' ' ' g ~ ) a ~ ( ~  ® . . .  ® ~ ® ~ 1 )  

= (g7~ 11g~ ) (9~319,~ ) <~7~ ~t g~ g,~ ) ( ~  11g~ - 1  g,~ ) 

(g~ I g ~ _ l -  9~)(gT~11g~: • g ~ ) a , , ( ~  ® . . .  ® ~1) 

Since <glh)<g-~lh> -- x for any g,h e G, this equals 

(using (20)). 

-1  
(giL [gi~ "" "gi2)ao(ui2 ® " "  ® uii) .  

Next  we prove tha t  for all 1 > 0, ulj E Vg~ j and x~ E V~, : 

(23) 

a,,(Xl ® • . .  ® xl @ u~l ® ui2 ® "" • ® ui~ ® X~+k+l @ "" • ® x,~) 

= ( / +  1 , . . . , l +  k) .  (Xl @ ' " @ x z )  ® (a~li2ui= ® " ' ®  aiki,u~l) 

® ( X l + k + l  ® ' ' ' ® X n ) .  
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Well, since ( l+  1 , . . . , l +  k) = ( l+  1, l + 2 ) . . .  ( l+  k -  1 , l +  k) then, by (22), the 

right hand side equals 

ao(g~l]9 i~ . . .g i2) ( l  + 1,1 + 2) . . .  (l + k -  1,1 + k) 

• (xl  ® " "  ® xt ®ui~ ® ' " ® u ~  ® uq ®x~+~+x ® . "  ® x,~) 

= a a ( g ~ l l g i ~ . . . g i ~ ) ( l  + 1 , / +  2 ) . . .  (l + /¢  -- 2 , / +  k -- 1)(giligi~) 

(x~ ® . . . ® x ~  ®u~  ®u~3 . . . ® u q  ®ui~ ®x~+~+l ® " ' ® x ~ ) .  

Continuing similarly, this equals 

-1  

(x l  O ' . . ® x l  ® u q  ® . . . ® u i ~  ®xz+k+l  ® ' " ® x , O .  

Again, since ( g l h ) ( 9  -1 I h) = 1, (23) is proved. 

Let a = al  -." a~ be a product of disjoint cycles where aj = (ikj_~+l, . . . ,  ikj), 

k0 = 0 and 1 < kl < • .. < k~-i < n. Now, (23) enables us to make computations 

for a "normalized" form of a: 

---- (1, 2 , . . . ,  kl)(k I -[- 1 , . . . ,  k2) . . .  (kr-1 -[- 1 , . . . ,  n). 

( 1 2 . . . n ]  For, setting T = ,il~...i,J we have v ~ v  -1 = a. Now, replacing ~ by aT7 -1 in 

(21) it will be necessary as a first step to replace (alo(1)uoo) ® . .  "ano(,~)Uo(n)) 

by r -1. ( a l a o ) U o O ) ® . . .  a,~o(~)u~(~)). Note that  aw(~)Uo(O = x~ E ( A ®  V)g~ and 

that x~(i) = a~(0o~(0Uo~(~), thus by (17) the left hand side of (21) equals 

O'Tltr_l • (av(1)aT(1)Ua.r(1) ® ' ' "  ® a'r(n)ar(n)Uar(n)). 

By the definitions of ~" and a and the fact that  ao~ E Z ( A )  this equals 

a T l~.- , • ( ail i2 ui2 ® ai2i3 ui3 ® " "  ® ai~ i~ uil ) 

® .*. ® (ai~,,_l+li1:~_l+2ui~_1+2 ® ' ' '  ® ai~i~,._l+lUi~:,_l+ 1) 

^-1  "O'2"lO'llp.r-1 (ui~ ® ®ul . )  (using (23)) -~ O'Taal a® 2 • • • aar (Tr . . . . . .  

= ao, a a 2 " "  aa.o "TO'-IT-I" (Ul ® ' ' '  ® Un) (using (17)) 

= a a  "(Ul ® ' " ® u n ) .  

This concludes the proof of the lemma. | 
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THEOREM 3.2: Let G be an abelian group with a symmetric bicharacter ( [ >, 

and k a field of characteristic O. Let V be n-dimensional and G-graded, so that 

for all g 6 support V, (gig) = 1. 

Let A be a G-graded algebra so that ab = (h [g)ba for a11 a 6 A 9, b E Ah. Let 

T 6 End(A @ V) be a morphism in AMkC; then 

det T = ~ sgn(a)a,;.  
aES~ 

Proof." By the definition of det(T) we must find a nonzero element w of V ®n 

so that  f n .  w # 0, where f~ -- ~ o e s ~  sgn (a)a, and then compute fn" T®'~(w). 

First we show that  as in the case of ordinary determinants, if xi -- xj then 

f~" (xl ® " "  ® xn) = 0. Without loss of generality we may assume xl  = x2. Then 

fn(1, 2).  (X 1 ® ' ' "  ® Xn) = A(g@l>" (Xl ®"" ® xn) = A "  (Xl ® " "  ® Xn). 

On the other hand, 

fn(1, 2). (X 1 ® ' ' "  ® Xn) = --fn" (Xl ~ ) ' ' "  ® Xn). 

Thus, f~.  (xl ® ' "  ® Xn) ---- 0. Hence, without loss of generality w -- ul ® ' "  ® un, 

where {ui} is a homogeneous k-basis for V, is an appropriate element. 

Now, since T(ui) = ~ aijuj, we have: 

fn" T®n(ul ® " "  ® an) = ~-~fn" (ailjlujl ® ai2j2uj2 @""  ® ai,d,~uj,~). 

By the above, the only nonzero summands have all uj~ distinct; hence the above 

sum equals 

fn " (ala(1)Ua(1) ® a2a(2)Ua(2) ® ' ' "  ® ala(n)Ua(n)) 
a6S~ 

= ~ .f~" (a-la,~ • (ul @ ' "  ® un)) (using (21)) 
a6S~ 

= Z aosgn ®"" ® 

The last equality follows, since by Theorem 2.4(2), f~ is a left A-module map. 

On the other hand, by definition, 

fn" Te'~(ul ® ' "  ® us) = det (T)fn  • (Ul @ ' "  @ u,~). 

By Corollary 2.7 this implies that  det(T) = ~ aosgn (a), as claimed. | 

Let us compute the determinant in an explicit example. 
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Example  3.3: Let A = Cq Ix, y] be the quantum plane. That  is, A equals the free 

algebra C(x, y) modulo the relation xy  = q - l y x ,  where q is an n th  root of 1. Let 

G = Z~ × Zn = {(i, j)[0 _< i , j  < n} with the symmetric bicharacter given on 

generators by: 

((1,0)[(1,0)) ---- ((0, 1)[(0, 1)) = 1, ((1,0)[(0, 1)) = q and ((0, 1)[(1,0)) ---- q - 1 .  

Note that  (gig) -= 1 for all g E G. 

Grade A by G by giving x "degree" (1, 0) and y "degree" (0, 1). In this grading 

A is quantum commutative [CW]. Explicitly: A -- ~-~(~,j)cc A l x i Y  j,  where A1 = 

C [ x  n , 

Recall that  A being G-graded, G finite, is equivalent to A being a (CG)*- 

module algebra. Let V -- (CG)*, and let {Pg} be a basis for V, dual to the 

basis {g} of CG. Then V has a natural G-grading: V = ~-~geC kpg. Since A is 

G-graded it follows that  A ® V = A ® (CG)* can be made into an algebra, the 

algebra A#(CG)*.  The multiplication in A#(CG)* is defined explicitly by: 

(a~pg) (b~ph) ---- abgh-1 ~Ph, 

all a, b E A, g, h C G. Right multiplications in A#(CG)* by elements of A are 

elements in A~4 cc  . 

So let Ta denote right multiplication by a E A. We claim that  

det Tx+y --- (x n + yn)n. 

Let B = {P(i,j)} be the basis (ui} of V = (CG)* used in proof of Theorem 

3.2. It is a G-homogeneous basis for V, with P(ij) E V(ij) and A(p(i , j))  -= 

~-~k,l P(i-k,j-l) ® P(k,l). Since x C Ao,0 ) and y E A(0,1) we have: 

Tx+y (P(i,j)) -=- P(i,j)(x + y) = xp( i - l , j )  ~- YP(i,j-1). 

Thus in the notation of Theorem 3.2 we have: 

a(i,j),(i_i,j ) : x and a(i,j),(i,j_l) = y while a(i,j),(k,l) -~ 0 

for all other k, I. Let S ~  -- permutation group on {( i , j )  ]0 < i , j  ~ n}; then for 
n 2 a E S,~2 given by: ( i , j )  ~ (i - 1, j )  we get ao = x , as all the a(i,j),o(i,j) equal 

x. For all other a E S,~2, either ao -= 0 or ao is a polynomial in x and y with 

total degree of x less than n 2. That  is: 

(24) det Tx+y = x n2 + y P ( x ,  y) and deg~ P(x ,  y) ~ n 2 - 1. 
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On the other hand, since x y  = q - l y x  and q" = 1, we have (x + y)n = x,~ + yn 

and so (det Tx+y) ~ = det T(x+y)~ = det T~+y~ .  But x n + y n  is a central element 

in A#(CG)* ,  hence det T(~n+y~) = (x n + yn) ~2. We have: 

(25) (det T~+~) ~ = (x n + y~)~2. 

Since det T~+y C A H -- C[x n , yn], a commutat ive domain, and since the ideal 

generated in it by x ~ + yn is a prime ideal, (25) implies that  det T~+y = 

a ( x  ~ + y~)~. Comparing this to (24) we deduce that  a = 1, and we are done. 

As pointed out by the referee, this determinant is the one to be expected using 

standard results. For, if F is the field of fractions of C[x n, y~] and R = A F  

is the ring of fractions of A, then R is a central simple algebra of dimension n 2 

over F.  The determinant obtained above is actually the determinant obtained by 

considering R C Endv(R)  via right multiplication of R on itself. This is usually 

called the "reduced norm" [Ro2, pp. 174-175]. 

4. I n t e g r a l i t y  o f  A / A  H 

In this section we apply results from previous sections to questions about  inte- 

grality of A over A g .  We start  by recalling some definitions and known results. 

Definit ion 4.1: Integrality: 

1. Let R C S, where R is central in S; then S is integral over R if each x E S 

satisfies a monic polynomial over R. 

2. Definition (1) was generalized by Schelter for non-commutative rings 

R c S :  

S is Schelter integral over R if every x E S satisfies an equation of the 

form 

+ Z p i ( x ) =  0, x n 

where the p~(x) are R monomials in x of degree deg~ Pi < n. Tha t  is, 

in each Pi the coefficients, which are elements of R, are allowed to be 

interspersed among the occurring x's. 

THEOREM 4.2 ([BV]): Let  R C S C_ B be P I  rings such that  B is Schel ter  

integral over S and S is Schelter integral over R.  Then B is Schelter integral 

over R.  
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It  is well known that  if a finite group, G, acts on a commutat ive algebra A, 

then A is integral over A G. Noether 's theorem moreover assures that  if A is 

k-affine then so is A c.  These were generalized to: 

THEOREM 4.3 ([DG, F-S]): Let H be a finite-dimensional, cocommutative Hopf 

algebra and let A be a commutative H-module algebra. Then 

1. A / A  H is integral. 

2. I f  A is k-atOne then A H is k-atOne. 

In the sequel we also use the following form of the A r t i n - T a t e  L e m m a :  

THEOREM 4.4 ([MR, p. 481]): Let A C B C C be rings such that 

1. A, B are central subrings of C. 

2. C is an a/~ne A-algebra. 

3. C is a finitely generated B-module. 

4. A is Noetherian. 

Then B is an aff/ne A-algebra. 

In what follows we shall generalize Theorem 4.3, replacing cocommutat ivi ty  

of H by triangularity and commutat ivi ty  of A by quantum commutativity.  We 

assume that  H is finite-dimensional, hence triangularity or cotriangularity are 

completely dual notions. We choose throughout this section to discuss triangular 

(H, R). We apply results of previous sections to the H-modules V -- H (acting 

on itself by left multiplication) or to V = A, in order to prove integrality of A 

over A H and related properties. First, we wish to find a convenient basis for 
n AR(H) .  We star t  with some basic lemmas. 

LEMMA 4.5: Let (H, R) be a quasitriangular Hopf algebra; then R can be 

written as follows: 

oEl  

where {ho) and {go) are linearly independent subsets of Kere  

Proof'. Since K -- Kere  has codimension 1, we may choose a basis for H of the 

form 

(1, h~lho E K, a E some index set I ) .  

Write R = 1 ® h + ~ ha ® go, some g~ E H. Applying 1 = (~ ®Id) (R)  = E(1)h, 

we see tha t  h = 1; applying 1 = (Id ® c)(R), we see that  ~ h~e(g~) = 0, and so 

all g~ E K. | 
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LEMMA 4.6: Let (H,R) ,  be a quasitriangular Hopfalgebra and assume u = 1. 

Then there exist xi C Kerc  so that fn-  (1 ® x2 @. . .  @ x,~) ~ 0 (and hence forms 

a k-basis for the 1-dimensionaI H-module A~(H) ) .  

Proo~ Let K = Kere .  Now, d i m K  -- n - 1, and K is an H-module,  since it is 

an ideal of H. Since u = 1, we may apply Corollary 2.12 to the space V = K to 

see tha t  f ~ - l "  K ®(~-a) is a 1-dimensional H-module. Moreover, since the action 

of S~ is induced by ~,  which is determined by multiplication by the R i, we have 

fn--1 " K ®n-1 C K ®n-1. Let x~ E K,  so that  

Embed S~-1 c S~ by: 

then 

A-I • (z2 ® . . .  ® x.~) # 0. 

S=-I = {a e Shin(l)  = 1}, 

(26) f~ = fn-1 + ~ sgn(a)a .  
a(1)#1 

We show that  f~ • (1 ® x2 ® ".. ® x~) ~ 0, which by Corollary 2.12 is a k-basis 
n for AR(H) ,  and we will be done. 

Consider the representation of R as in Lemma 4.5; then for any y E K: 

(1,2)  ( l®y)  = ~ g ~ y ,  h~ + y ,  1. 

Similarly, if all y~ E K,  we have 

( i , i +  1) .  (Yl ® ' " ®  1 ®y~+l ® " ' ® Y ~ )  = z~ + (Yl ® ' " ® Y ~ + I  ® 1 ® . . .  @yn), 

where zi E K ®~. Thus, if cr E S,~ and y~ E K: 

(27) a - ( y l @ - . . ® l @ y ~ + l ® ' " ® y , ~ ) = z ~ + ( W l ® ' " ® l @ ' " ® w n ) ,  

where zo E K ®~, w~ C K and 1 is in the a( i ) - th  position. Thus, by (26) and (27) 

A-f1 ® x~ ®. . -  ® x~) 

= f,~-1 " (1 @x2 @. . .  ®xn)  + y  

= 1 ® f = - I  " (x2 ® " "  @xn) + y 

where y = ~ ( 1 ) # 1  sgn (a)a(1 @ x2 @ ..... ® xn). 
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Note tha t  y • K ®n + K ®  I ® . . . ® K + . . . +  K ® . . . ® K ®  1. Since 

1 @ f ~ - i  • (x2 ® - ' -  @ x,~) and y belong to different components of a direct sum, 

and since fn -1  • (x2 ® . . .  ® x=) # 0, we deduce that  

f n ' ( l @ x 2 ® " ' @ x ~ ) # O .  | 

We are ready to prove the main theorem of this paper. Some of the ideas are 

adaptat ions of the methods of [F-S] to this more complex situation. 

THEOREM 4.7: Le t  ( H , R )  be a triangular n-dimensional  semis imple  H o p f  

algebra over k o f  Char k = 0 or Char k > n. Le t  A be a q u a n t u m - c o m m u t a t i v e  

H - m o d u l e  algebra; then: 

1. A is integral over A H. 

2. A is a P I  ring. 

3. I f  u = 1 then A is integral over A H o f  degree n. 

Proof" We first prove (3). Let A be an indeterminant and denote A[A] by E. 

Extend the H-act ion  to E by defining h .  A = E(h)A, all h E H.  Then E is a 

quantum-commutat ive  H-module  algebra with E H = AH[A]. 

Let 1 H ® X 2 ® ' '  "®Xn be as in Lemma 4.6; then by Corollary 2.16, 0 # 1 E ® f n "  

(1H ® X2 ® "'" ® Xn) is an E-basis for E ® A~(H). Let m = 
®~ 

O(1E ® fn  " (1H ® x 2 ® ' ' ' ® x , 0 ) ;  then f~  . ( E # H )  E = E . m = m +-- E .  

Also note that  f~  - ( A # H )  ®74 C A . m.  Now let T • E n d E # H ( E # H ) ;  then by 

the definition of the determinant and Theorem 2.19, T ®~ (m) = (det T ) m ,  where 

d e t T  • AH[A]. In particular, let a • A and let 

T: E # H  --+ E # H  

be right multiplication by A -  a. Then T E E n d E # H ( E # H ) ,  and A pulls through 

to the left. 

Viewing H C E # H  as usual, we have: 

T®nO(1E ® 1H ® X2 ®''" ® Xn) 

= T®n(1 ~E X2 ~E' '"  ~E Xn) 

= ()~ - a)  ® ~  z2()~  - a)  ® E " "  ® z  zn( )~  - a )  

• (A - a ) ( E # H )  ®~. 
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By Corollary 2.17, T ®n commutes with the actions of E # H  and fn, thus by the 

above: 
T®~(m)  

: T®n( fn  " ~(1E ® 1H Q X2 ® ' ' '  ® Xn) 

C (A--  a ) fn"  ( E # H )  ®~ = ( A -  a ) E . m .  

However T®n(m)  = det(T)-m. Thus det(T) E ( A - a ) E ,  and hence det(T)(a)  = 0. 

Since det(T) C AH[)~], we have shown that a satisfies a polynomial over A H. 

Finally, since A pulls to the left we have: 

(det T)  . m =(A - a)f,~ . [1 ~E ()~z2 -- x2a) (~E " "" @E (.~Xn -- Xna)] 

:)~n fn  " (1 (:~E X2 (~E ' '"  (:~E Xn) "~ fn " Z 

where Z • A'~-I(A#H)®~ + An-2(A#H)®~ + . . -  + ( A # H )  ®~. Hence fn • Z • 

A ~ - I A m  + A n - 2 A m  + .. • + A m  and so det T is a monic polynomial of degree n. 

This proves (3). 

1. and 2. We reduce to (3) by considering [ t  = H / ( u  - 1)H and then pulling 

back by applying known results about group gradings or actions. Specifically, 

(u - 1)H is a two-sided ideal since u is central, moreover it is a coideal of H 

as well, since u is group-like. Thus (H, R) is a triangular, semisimple Hopf 

algebra with fi = 1. Since H is semisimple, u 2 = 1. Let G = (1, u); then G acts 

by automorphisms on A or equivalently A is Z2 graded where A = A+ ® A_, 

A+ = A G = {a • A l u . a  = a} and A_ = {a • d l u . a  = -a} .  Since ( u -  1) .A+ = 

0, /~ acts on A+. Since A is quantum commutative with respect to (H, R), A+ 

is quantum commutative with respect to (/~,/~). Moreover, it is obvious that  

A H = A H. Applying (3) to H and A+ we deduce that  A+ is integral over A H 

of bounded degree n. Thus by [Rol, p. 9] A+ is a PI ring. But now, by [BC] or 

[M] this implies that  A is a PI ring. Also, A is trivially Schelter integral over A+ 

since IGI = 2. Applying now Theorem 4.2 to the extensions: A H C A+ C A, we 

deduce that  A is Schelter integral over A H. Since A H is central in A, we deduce 

that  A is integral over A M. | 

When A is assumed to be affine over k, more can be said; this is the general- 

ization of Noether's theorem: 

THEOREM 4.8: Let  (H, R) be a finite-dimensional semisimple triangular Hop[  

algebra over k o f  Char k = 0. Let  A be a k-atffne, quan tum-commuta t i ve  H -  

modu le  algebra; then: 
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1. A H is k-affine (hence Noetherian). 

2. A is a finitely generated left and right AH-module. 

3. A is a left and right Noetherian PI  ring. 

Proof: 1. and 2. are proved as follows: By Theorem 4.7, A is a PI ring 

which is integral over the central subalgebra A H. Since A is k-affine we deduce 

[MR, p. 476] that  A is a finitely generated Ag-module. By Artin-Tate 's  lemma 

(Theorem 4.4) applied to k C A H C A we conclude that A H is k-affine. 

3. By (1), A H is a commutative k-affine algebra hence A H is a Noetherian 

ring. Since A is a finitely generated left and right AH-module it follows that  A 

is a left and right Noetherian ring. It is PI by Theorem 4.7. | 

Remark  4.9: The condition on semisimplicity of H is necessary as shown in an 

example in [Z]. In this example, let (H, R) be Sweedler's 4-dimensional triangular 

Hopf algebra over C (which is not semisimple), and let A = SR(H) .  Then A is a 

C-affine quantum-commutative H-module algebra, but A H is not C-affine. 

We ask: 

QUESTION 4.10: Is Theorem 4.7 still true omitt ing any characteristic 

assumption ? 

There is already a "Noether's theorem" for Hopf algebra actions in the literature. 

THEOREM 4.11 ([M2, Th. 4.3.7]): Let A be a left Noetherian ring which is an 

affine k-algebra. Let H be finite-dimensional, and assume that A is an H-module  

algebra such that the trace [: A H A H is surjective. Then A H is k-affine. 

This result assumes that A is Noetherian, which is automatic by the Hilbert 

basis theorem when A is commutative. Following the referee's suggestion we ask 

for a kind of "quantum Hilbert basis theorem"; that is: 

QUESTION 4.12: When is an affine quantum-commutative H-module  algebra 

necessarily Noetherian ? 

Note that  Theorem 4.8 offers an instance in which this question has a positive 

solution. 

We summarize in the following some properties of the prime spectrums of A 

and A H which are a direct consequence of Theorem 4.7 and [MR, p. 478]. 

COROLLARY 4.13: Let (H, R), A, k be as in Theorem 4.7; then: 
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1. (Lying over) I f  p E SpecA H then there exists P C SpecA so that P N A  H = p. 

There exist only a finite number of P c SpecA such that P N A H ~- p 

[BY, 2.8]. 

2. (Going up) I f  p, q 6 SpecA H, with p C q and P c SpecA with P ;3 A H = p, 

then there exists Q 6 SpecA so that P C Q and Q A A H = p. 

3. (Incomparability) I f  P, Q 6 SpecA with P ~ Q, then P N A H ~ Q n A H. 

Moreover, by [MR, p. 484] and the above, 

COROLLARY 4.14: I f (H ,  R), k, A are as in Theorem 4.7 and assume A is k-afiine, 

then: 

1. J (A) ,  the 3acobson radical of  A, is nilpotent ([B] and Corollary 4.13). 

2. Every  irreducible left (right) A-module is finite-dimensional. 

3. A is a 3acobson ring. 

4. A satisfies the Nullstellensatz. 

Note that  for group algebras or their duals most of the applications are known. 

For G a finite group, if G acts on A and IG1-1 6 A, then by [Qu], A is always 

Schelter-integral over A G. Moreover, by [K], if A c is PI then so is A. If A is 

graded by G, then A is always Schelter-integral over A1, a result of Bergman 

[Pa]. Moreover, as mentioned already in the proof of Theorem 4.7, if A1 is PI 

then so is A [BC]. In either case, if A G (respectively A1) is central in A, then A 

is a PI ring integral over A G (respectively A1). 
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